验简单易行,但转轴总是有摩擦,也存在空气阻力, 这就带来一定的测量误差。

图 3 是两种方法在相同条件下的 测量结果比较。曲线是在大气压力以及恒定的脉冲能量条件下,比冲量与峰值功率密度之间的典型关系曲线。曲线(a)偏高,曲线(b)偏低,是由于靶的形状不同引起的。靶的形状也影响对峰值功率密度的测量准确度,再加上方法本身的测量误差等原因所造成的。

参考文献

- [1] John E. Ready; AD A010485.
- [2] J. E. Lowder, L. C. Pettingill; Appl. Phys. Lett., 1974, 24, 204.
 - (中国科学院力学究研所 王春奎 傳裕寿 北京电子工程总体设计部 李惠宁 1981年3月25日收稿)

内腔封离型玻璃波导 CO₂ 激光器寿命的研究

Abstract: An analysis of the deteriorating mechanism of the coating has been made and a formula for design of coaxial anode has been deduced. Adopting this method and combining with the CO₂ catalytic regeneration technique, we have developed a glass wave-guide laser with a lifetime of over 500 hours.

由波导激光器的理论知道,为了降低平面镜的 损耗,一般安装都是尽可能地靠近波导口^[1]。但实 验发现,在没有过渡波导情况下,腔镜越靠近波导口 越容易损坏,特别是镀金全反射镜,当其至波导口距 离在10毫米以内时,只要激光管放电十几小时就可 以明显地看到镀金膜的损伤。两支实验管镀金膜损 坏的情况示于图1。镀金膜最初的损伤并不完全是 在对准波导孔的中心处,而是在它的附近相应于等 离子区转弯处。损伤出现后功率输出并不明显下 降,直到对准波导处受到损伤时功率输出才有所下 降,这期间两只实验管分别经历了50和30小时的 正常运转。我们认为这表明金膜的损坏并不是因为 腔内功率密度过高而烧毁的,而是一种缓慢的腐蚀 过程,对这种腐蚀的机理,我们提出如下的分析。

图1 镀金膜损坏示意图 1---镀金膜; 2---损伤处; 3--波导口

由放电的理论知道,限制等离子体的绝缘管壁, 因为带电粒子双极扩散消失原因而带负电位,其值 可表示为[2]:

$$V_R = -(V_b + V_s) \tag{1}$$

$$V_{\boldsymbol{b}} = -\frac{kT_e}{e} \ln(R/1.7\lambda_e) \tag{2}$$

$$V_{s} = -\frac{kT_{e}}{2e} \ln \left(\frac{m^{+}}{m^{-}}\right) \left(\frac{T_{e}}{T_{g}}\right) \tag{3}$$

式中: VR----等离子区中心相对管壁电位差;

V。——等离子区中心相对管壁离子层电位 差;

V。——离子层内电位差;

k——玻耳兹曼常数, 1.38×10-23 焦耳/K;

e----电子电荷, 1.602×10-19 库仑;

m+, m---离子与电子质量;

R---波导管半径, 0.75毫米;

λ。——电子平均自由程;

T., T.——电子与气体温度。

管壁电位的计算是在纯氦气的近似条件下进行 的:

① 令 p=100 托, 求得 λ_e=81.4×10⁻⁵ 厘米;

② 利用 $T_e/V_i = f(cpR)$ 关系曲线^[2]和 $c=4 \times$ 10⁻³, $V_i = 24.6$ 伏,求得电子温度 $T_e = 2.2 \times 10^4$ K ≈3 电子伏,这个数值与一些通用 CO₂ 激光器中的 电子温度 $T_e = 3.1$ 电子伏相接近^[3];

③ 将有关的数值代入(1)、(2)、(3)式:即可求出:

 $V_b = -7.6$ 伏; $V_s = -12.5$ 伏; $V_R = -20.1$ 伏。

此计算值与实际相比虽有一定的差异,但因氦气约 占工作气体的80%,所以计算值比较接近实际。

由上面的计算可以看出,管壁相对等离子体会 产生-20.1 伏的电位差,当镀金膜靠近等离子体时 同样也会产生负电位,所以我们认为正离子在此电 位的作用下,使其受到腐蚀是完全可能的。基于这种 分析,我们提出空心圆筒阳极与波导管同轴安装的 结构,示于图 2。这个空心同轴阳极,一方面它与阴 极产生放电等离子体,另一方面在它内部的等电位 空间里,由等离子体扩散进来的高能电子,可以因为 碰撞而消耗掉能量,被它吸收,不致落在镀金膜上, 从而保护了金膜。

同轴阳极尺寸的确定比较困难,但为了工程上的需要,在一些特定条件下进行计算是必要的。假 设:

① 工作气体为纯氦气, p=100 托;

② 阳极位降 △U₄=0;

⑧ 电子在阳极空间运动,只作弹性碰撞,每次碰撞的能量损失率 K=2m⁻/m⁺=2.8×10⁻⁴。当其能量损耗到室温热能 3/2kT_g时,就认为它既不能产生等离子体也不能克服阳极的引力而被吸收掉。

根据上面假设条件,电子能量方程可建立如下:

$$\boldsymbol{\varepsilon}_{\boldsymbol{e}} \left(1 - \frac{2m^{-}}{m^{+}} \right)^{(\boldsymbol{x}/\lambda_{\boldsymbol{e}})^{2}} = \frac{3}{2} k T_{\boldsymbol{g}} \tag{4}$$

或

$$x = \lambda_{\theta} \left[\log \left(\frac{3/2kT_{\theta}}{\varepsilon_{\theta}} \right) / \log \left(1 - \frac{2m^{-}}{m^{+}} \right) \right]$$
(5)

式中 x——电子在阳极筒内沿轴线方向 所 能 渡 越的最大长度;

ε。——电子平均能量;

 T_g ——气体温度, $\frac{3}{2}kT_g \approx 0.039$ 电子 伏。将 已知的数值代入(5)式即可求出

x=1.02 毫米

由波导激光器的理论知道,平面腔镜与波导口 之间的长度受耦合损耗的限制,其值可表示为^[1]:

$$L = 57 \left(\frac{x}{b}\right)^{3/2} [\%]$$
 (7)

(6)

(9)

$$b = \pi \omega_0^2 / \lambda_0 \tag{8}$$

 $\omega_0 = 0.643a$

式中 b——共焦参数;

a——波导半径。

经过计算只要 *x* <8 毫米,由此引起的损耗均小于 2%。因此同轴阳极的长度取 1.02 毫米是允许的。

同轴空心阳极内径可这样确定,首先算出镜面 上的光束半径^[4]:

$$\boldsymbol{\omega}^{2}(\boldsymbol{x}) = \omega_{0}^{2} \left\{ 1 + \left[\frac{\lambda_{0} \boldsymbol{x}}{\pi \omega_{0}^{2}} \right]^{2} \right\}$$
(10)

式中 *x* 为波导口至镜面的距离。只要阳极内径不小 于镜面光束直径的 2 倍,由此产生的衍射损耗可以 忽略不计。阳极内径显然不能选得过大,因为这样 会降低阳极的屏蔽作用。考虑到装配误差,我们把 同轴阳极的尺寸定为:

实验证明这个尺寸是合理的。实验管经过 500 小时 连续运转以后,金膜未发现损伤。我们实验的管结 构简图示于图 3。波导长 150 毫米,内径 ϕ 1.5毫 米,壁厚 0.4毫米。全反射镜为镀金平镜。输出镜 为镀膜锗平镜,透过率 10%。阴极为 ϕ 2×12毫米 的 Ag-Cu 皮圆筒,并经氧化处理。阳极为 ϕ 3.5×4 毫米铂皮圆筒,金膜至波导口距离为 8~9毫米。实 验管内充入气体总压强 100 托,最高曾达 125 托。气 体配比为 CO₂:He:Xe=1:4:0.2。功率测量采用 YP-2 型激光功率计。

1—反射镜; 2—玻壳; 3—水管; 4—回气管; 5—波导管; 6、7—电极引出管

寿命曲线及数据记录分别示于图4与下表中。

. 51 .

时 间 (小时)	24	48	72	96	120	144	168	192	216	240	264	288	312	336	360	384	408	432	456	480	504	528	532
电 流 (毫安)	3	3	3	3	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	3	2.7	3	3	3	3.5	3.4	3.8	3.1	3	3
功 率 (瓦)	0.65	0.65	0.6	0.6	0.56	0.56	0.5	0.5	0.47	0.48	0.46	0.46	0.56	0.54	0.5	0.5	0.64	0.63	0.64	0.5	0.6	0.58	0.48

寿命实验管的时间、电流、功率数据记录

图4 寿命试验管的输出功率曲线

寿命曲线测试采用昼夜连续点燃法。工作寿命定义, 按照国家科委规定是指器件正常工作,当其输出功 率下降到起始功率70%时的连续运转时间(小时)。 由测试结果看出,我们已使内腔玻璃波导激光器的 封离寿命延长到500小时以上。 实验管输出功率偏低,主要原因是阴极温度引 起的谐振腔失调。

本文在写作过程中曾得到冯志超、裘明信教授 的指导与帮助,在此表示感谢。

参考文献

- [1] John J. Degnan; Appl. Phys., 1976, 11, 1~32.
- [2] A. Von. Engel; Ionized Gases, 1955, 227.
- [3] Willett, Colin S.; Introduction to Gas Laser, 1974, 281.
- [4] Theodore S. Fahlen; Appl. Opt., 1973, 12, No. 10, 2383.

(成都电讯工程学院 王瑞峰 孙维勇 洪永和 1981年3月13日收稿)

TEA CO2 激光器用的低电感马科斯高压发生器

Abstract: In this paper we introduce a Marx bank which has low inductance and the characteristics of high repetition rate discharge, and can be used in TEA CO_2 lasers. Its construction is illustrated in detail. The inductance of Marx bank is less than 60 nH, the discharge repetition rate is higher than 40 pps and the lifetime over 10^7 pulses.

对于采用电激励方式的 TEACO₂ 激光器 来说, 一般总希望其放电电流脉冲的前沿陡而放电 快,这 是和放电回路的电感量直接相关的。我们研制了一 种用于 TEACO₂ 激光器的低电感重复 频率 马科斯 高压发生器,根据测试结果,其电感量、损耗因数、重 复频率、寿命和比容都很理想。

电容器是马科斯高压发生器的核心,对于性能 优良的马科斯高压发生器,应采用低电感重复频率 高压电容器。电容器的电感主要是由电容器的结构 和引线产生的;电容器能否在重复频率条件下持续 工作,与电容器的能量损耗有直接关系,而电容器的 能量损耗主要是取决于制作电容器所采用的材料。 为了减小损耗,我们选用了优良的绝缘介质——250 微米厚的聚脂薄膜作为电容器的绝缘层; 电极板选 用 50 微米厚的紫铜箔。我们制作的电容器如图 1 所示,它在结构上有两个特点:(1)利用了聚脂薄膜 耐压高、韧性好的优点,将其对边弯折,用曲折的一 端把电极板不引线的一端包起来,这样就大大减小 了电极板有效面积之外产生电感和损耗的长度(如 图 2 中所示的 a 部分)。(2)电极引线以电极板的全 宽度引出,因而减小了由于引线而产生的电感和损 耗。我们制作的电容器的电感量一般为 20~30 毫微

. 52 .